	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
$\begin{aligned} & \stackrel{C}{000} \\ & \stackrel{0}{0} \\ & 0 \end{aligned}$	- Designing a vehicle that includes wheels, axles and axle holders, which will allow the wheels to move \bullet Creating clearly labelled drawings which illustrate movement	- Generating and communicating ideas using sketching and modelling - Learning about different types of structures, found in the natural world and in everyday objects - Designing a pouch	- Designing a toy which uses a pneumatic system - Developing design criteria from a design brief - Generating ideas using thumbnail sketches and exploded diagrams - Learning that different types of drawings are used in design to explain ideas clearly	- Designing a shape that reduces air resistance - Drawing a net to create a structure from - Choosing shapes that increase or decrease speed as a result of air resistance - Personalising a design - Writing design criteria for a product, articulating decisions made - Designing a personalised book sleeve	- Designing an electronic greetings card with a copper track circuit and components - Creating a labelled circuit diagram showing positive and negative parts in relation to the LED and the battery - Writing design criteria for an electronic greeting card - Compiling a moodboard relevant to my chosen theme, purpose and recipient - Designing a stable structure that is able to support weight - Creating frame structure with focus on triangulation	- Designing a waistcoat in accordance to specification linked to set of design criteria to fit a specific theme - Annotating designs
$\frac{\stackrel{\otimes}{\sqrt{0}}}{\Sigma(1)}$	- Adapting mechanisms	- Making a structure according to design criteria - Creating joints and structures from paper/card and tape - Building a strong and stiff structure by folding paper - Selecting and cutting fabrics for sewing - Decorating a pouch using fabric glue or running stitch - Threading a needle - Sewing running stitch, with evenly spaced, neat, even stitches to join fabric - Neatly pinning and cutting fabric using a template	- Creating a pneumatic system to create a desired motion - Building secure housing for a pneumatic system - Using syringes and balloons to create different types of pneumatic systems to make a functional and appealing pneumatic toy - Selecting materials due to their functional and aesthetic characteristics - Manipulating materials to create different effects by cutting, creasing, folding, weaving	- Measuring, marking, cutting and assembling with increasing accuracy - Making a model based on a chosen design - Making and testing a paper template with accuracy and in keeping with the design criteria - Measuring, marking and cutting fabric using a paper template - Selecting a stitch style to join fabric, working neatly sewing small neat stitches - Incorporating fastening to a design	- Making a functional series circuit - Creating an electronics greeting card, referring to a design criteria - Mapping out where different components of the circuit will go - Making a range of different shaped beam bridges - Using triangles to create truss bridges that span a given distance and supports a load - Building a wooden bridge structure - Independently measuring and marking wood accurately - Selecting appropriate tools and equipment for particular tasks - Using the correct techniques to saws safely - Identifying where a structure needs reinforcement and using card corners for support - Explaining why selecting appropriating materials is an important part of the design process - Understanding basic wood functional properties	- Using a template when pinning panels onto fabric - Marking and cutting fabric accurately, in accordance with a design - Sewing a strong running stitch, making small, neat stitches and following the edge - Tying strong knots - Decorating a waistcoat attaching objects using thread and adding a secure fastening - Learning different decorative stitches - Sewing accurately with even regularity of stitches
	- Testing mechanisms, identifying what stops wheels from turning, knowing that a wheel needs an axle in order to move	- Exploring the features of structures - Comparing the stability of different shapes - Testing the strength of own structures - Identifying the weakest part of a structure - Evaluating the strength, stiffness and stability of own structure - Troubleshooting scenarios posed by teacher - Evaluating the quality of the stitching on others' work - Discussing as a class, the success of their stitching against the success criteria - Identifying aspects of their peers' work that they particularly like and why	- Using the views of others to improve designs - Testing and modifying the outcome, suggesting improvements - Understanding the purpose of exploded-diagrams through the eyes of a designer and their client	- Evaluating the speed of a final product based on: the effect of shape on speed and the accuracy of workmanship on performance - Testing and evaluating an end product against the original design criteria - Deciding how many of the criteria should be met for the product to be considered successful - Suggesting modifications for improvement - Articulating the advantages and disadvantages of different fastening types	- Evaluating a peer's product against design criteria and suggesting modifications that could be made to improve the reliability or aesthetics of it or to incorporate another type of circuit component - Stating what Sir Rowland Hill invented and why it was important for greeting cards - Analysing and evaluating a range of existing greeting cards - Adapting and improving own bridge structure by identifying points of weakness and reinforcing them as necessary - Suggesting points for improvements for own bridges and those designed by others	- Evaluating work continually as it is created

